Effect of Adhesive Thickness on the Intensity of Singular Stress at the Adhesive Dissimilar Joint*

نویسندگان

  • Yu ZHANG
  • Xin LAN
چکیده

Abstract This paper deals with the singular stress field at the adhesive dissimilar joint, and discusses the effect of material combination and adhesive thickness on the intensity of the singular stress when bonded strip is subjected to tension. A useful method to calculate the intensity of singular stress at the adhesive dissimilar joint is presented with focusing on the stresses at the edge calculated by finite element method. The intensities of singular stress are indicated in charts with varying adhesive thickness t under arbitrary material combinations for adhesive and adherents, and it is found that the intensity of singular stress increases with increasing the adhesive thickness t until t W = , when W is the width of adhesive. The intensity of singular stresses are also charted under arbitrary material combinations which are presented by Dunders’ parametersα , β when / 0.001 t W = and / 0.1 t W = , and it is found that for a fixed value β the intensity of singular stress increases with increasing α when α is small while it decreases with increasing α when α is large.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intensity of Singular Stress Field at the Corner of Adhesive Layer in Bonded Plate

In this paper the strength of adhesive joint under tension and bending is discussed on the basis of intensity of singular stress by the application of FEM. A useful method is presented with focusing on the stress at the edge of interface between the adhesive and adherent obtained by FEM. After analyzing the adhesive joint strength with all material combinations, it is found that to improve the ...

متن کامل

Analytical Solution of Stress Field in Adhesively Bonded Composite Single-Lap Joints Under Mechanical Loadings

In this paper, considering an adhesively bonded composite single-lap joint, a novel approach is presented to predict the peel and shear stress distributions of the adhesive layer for an ASTM standard test sample. In current method, the equilibrium equations are derived using the energy method and based on the Timoshenko’s beam theory. Two solution procedures then are discussed, one of which rep...

متن کامل

The Effect of Fiber Breakage on Transient Stress Distribution in a Single-Lap Joint Composite Material

In the present study, the transient stress distribution caused by a break in the fibers of an adhesive bonding is investigated. Transient stress is a dynamic response of the system to any discontinuity in the fibers from detachment time till their equilibrium state (or steady state). To derive the governing dynamic equilibrium equations shear lag model is used. Here, it is assumed that the tens...

متن کامل

Failure Mode and Analysis of the Bonded/bolted Joints between a Hybrid Fibre Reinforced Polymer and Aluminium Alloy

Composites are being used extensively in several engineering applications. However, the efficiency of the joints used in joining composites and metals can be improved. To move towards a sustainable and environment friendly future, natural fibre composite material was used. Towards the above objective, research work was carried out for the assembly between a composite and aluminium. Three differ...

متن کامل

ارتباط ضخامت دنتین باندینگ رزینی با میزان انقباض پلیمریزاسیون: طراحی روش

Dentine bonding systems are usually unfilled, and so their shrinkage may be significant. High shrinkage may cause internal stress at the interface between resin-composite restoration and the dentine substrate. Failure of the adhesive interface may be observed due to the interna! stress. The aims of this study were:A) To obtain a suitable method for measuring the kinetics of polymerisation shrin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010